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New strategies of ordered predictors selection (OPS) were developed in this work, making this method
more versatile and expanding its worldwide use and applicability. OPS is a recognized method to select
variables in multivariate regression and is used by analytical chemists and chemometrists. It shows high
ability to improve the prediction of models after the selection of a few and important variables. At the
core of OPS is sorting variables from informative vectors and systematically investigating the regression
models to identify the most relevant set of variables by comparing the cross-validation parameters of the
models. Nevertheless, the first version of the OPS method performs variable selection using only one
informative vector at a time and is limited to just one variable selection run. Then, three new strategies
were proposed. First, an automatic method was developed to perform variable selection using several
informative vectors and their combinations. Second, the feedback OPS is presented, in this new strategy
the pre-selected variables would return to a new selection. Last, a method to apply OPS in full array
subdivisions called OPS intervals was established. Initially, the new strategies were applied in the six
datasets used in the original OPS paper to compare the prediction performance with the new OPS al-
gorithms. After that, twelve new datasets were used to test and compare the new OPS approaches with
other variable selection methods, genetic algorithm (GA), the interval successive projections algorithm
for PLS (iSPA), and recursive weighted partial least squares (rPLS). The new OPS approaches out-
performed the first OPS version and the other variable selection methods. Results showed that in
addition to greater predictive capacity, the accuracy in the selection of expected variables is highly su-
perior with the new OPS approaches. Overall, the new OPS provided the best set of selected variables to
build more predictive and interpretative regression models, proving to be efficient for variable selection
in different types of datasets.
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Abbreviations

autoOPS automatic ordered predictors selection
Cal calibration
COR correlation between each column of matrix X with y
COV covariance procedures
URXY univariate regression between each column of matrix

X with y
feedOPS feedback ordered predictors selection
GA genetic algorithm
GC gas chromatography
hMod number of latent variables of the model
hOPS number of latent variables for ordered predictors

selection
hOPS number of latent variables to generate the best

informative vector in OPS method
iOPS ordered predictors selection by intervals
iSPA intervals successive projections algorithm for PLS
MLR multiple linear regression
MMP-2 matrix metalloproteinases type 2
MS mass spectrometry
MSC multiplicative scatter correction
NAS net analyte signal
NIPALS nonlinear iterative partial least squares

NIR near-infrared spectroscopy
NMR nuclear magnetic resonance spectroscopy
OPS ordered predictors selection
OPSv1 first version of ordered predictors selection
PLS partial least squares
Pred prediction
PRODALL the product of all single vectors simultaneously
QSAR quantitative structure-activity relationship;
R correlation coefficient (Rc) of calibration, (Rcv) of

cross-validation, and (Rp) of prediction
REG regression coefficients
RMSE root mean square error (RMSEC) of calibration,

(RMSECV) of cross-validation and (RMSEP) of
prediction

rPLS recursive weighted partial least squares
SNV standard normal variate
SQR residual information of the reconstructed matrix

with h latent variables
SVMR support vector machine regression
UV ultraviolet spectroscopy
VIP variable importance on projection
Vis/NIR visible and near infrared spectroscopy
WGHT weights
XRF X-ray fluorescence spectrometry
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1. Introduction

Multivariate regression models describe the relationship be-
tween the dependent and independent variables when more than
one measurement is acquired for each sample [1,2]. There are
several multivariate regression methods, such as multiple linear
regression (MLR), support vector machine regression (SVMR) and
partial least squares regression (PLS). However, the latter is the
most commonly used for building first order inverse regression
models from data of chemical origin [3].

PLS regression can deal with a large number of highly correlated
independent variables, band overlaps, and experimental noise
[4,5]. Also, it enables simultaneous modeling and the prediction of
more than one analyte [2,3]. However, in some situations, the
models cannot provide a satisfactory prediction. This may occur
because not all variables are equally essential and variations in the
concentrations of the chemical components of interest present in
the sample do not cause the same change in all variables [6]. Also,
there are non-linear and low signal-to-noise ratio regions that
might affect the model. This evidence indicates that the proper
selection of variables can significantly improve the efficiency of the
multivariate regression model, in addition to making it simpler for
interpretations [1,6].

Variable selection is a significant step in multivariate regression,
and it has become a fundamental tool in many different research
areas. This is because of increased database dimensions, meaning
that some variables may be redundant, irrelevant or represent
noise [2,6,7]. Models built after the removal of non-informative
variables will produce better predictions, a better interpretation
with the selection of markers or biomarkers, lower measurement
costs through the use of portable instruments, and a decrease in
data processing time [1,6].

Several feature-selection methods [8e11] have been applied in
several works in the literature [12e16]. Nevertheless, most
selection methods are not generalized or efficient for all types of
datasets. Different analytical techniques provide distinctive pre-
dictor types, and each technique has some well-defined peculiar-
ities [17]. In 2009, Te�ofilo et al. presented first version of the
ordered predictors selection (OPS) algorithm [17], with the
advantage of being simple, fast and efficient for the selection of any
variable type. Since the publication in 2009, the OPS method has
had its potential recognized in the literature [7,18,19], showing a
high ability to improve the prediction of multivariate regression
models with few variables [15,20,21]. However, the original OPS
algorithm performs the variable selection using only one infor-
mative vector at a time and is limited to just one variable selection
run, which turn out to be limitations of the original version when
searching for the best set of variables.

Therefore, the aim of this work was to make a more versatile
OPS, expanding its worldwide use and applicability. The develop-
ment of three new OPS approaches was proposed: i) automatic OPS
(autoOPS), which automatically performs all calculations using
either or both informative vectors and its combinations, so the best
one is chosen; ii) feedback OPS (feedOPS), wherein the pre-selected
variables would go through a new selection run; and iii) interval
OPS (iOPS), the option to apply OPS in subdivisions of the full array.
The new OPS algorithms were developed to be easily understood
and executed. Besides that, the algorithms were applied to several
types of dataset (sparse or non-sparse), with the proposal to select
interpretive variables with greater predictability, and high repro-
ducibility, i.e., selecting the same set of variables when executing
the selection more than once.
2. Theory background

2.1. Model evaluation

Regression models were evaluated using statistical parameters
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such as the root mean square error (RMSE) and correlation coeffi-
cient (R), according to equation (1) and equation (2), respectively.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXIm
i

ðyi � byiÞ2
vuut ,

Im (1)

R ¼
XIm
i¼1

ðbyi � bbyÞðyi � yÞ
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXIm

i¼1

ðbyi � bbyÞ2
vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXIm

i¼1

ðyi � yÞ2
vuut (2)

where yi and ŷi are measured and predicted values for each i
sample, respectively. The ӯ is the y values average.When calibration
is used, Im represents the number of samples in the calibration set,
and the error and correlation coefficient are the root mean square
error of calibration (RMSEC) and the correlation coefficient of cali-
bration (Rc), respectively. When internal cross-validation (CV) is
used, Im represents the number of samples in the cross-validation
set, and the error and correlation coefficient are the root mean
square error of cross-validation (RMSECV) and the correlation co-
efficient of cross-validation (RCV), respectively. When external
validation is used, Im represents the number of predicted samples
(P) and, in this instance, the error and correlation coefficient are the
root mean square error of prediction (RMSEP) and the correlation
coefficient of prediction (RP), respectively.
2.2. OPS theory

The OPS method is based on obtaining an informative vector
containing information about the best independent variables for
prediction. This informative vector can be obtained of several ways
from calculations performed with X matrix columns (independent
variables) and dependent variables (y), and its length is equal to the
number of independent variables. The original OPS method calcu-
lates informative vectors using the regression coefficients (REG),
the correlation between each column of matrix X with y (COR),
residual information of the reconstructed matrix with h latent
variables (SQR), variable importance on projection (VIP), net ana-
lyte signal (NAS), and covariance procedures (COV). Details about
these vector calculations can be found elsewhere [17].

After obtaining an informative vector, the independent variables
of X matrix are differentiated according to their corresponding
absolute values in the informative vector. The highest absolute
value corresponds to the more important independent variable,
and the differentiated variables are sorted in descending order of
absolute values magnitude. Multivariate regression models are
built and evaluated using cross-validation approach. An initial
subset of variables (window) is defined to build and evaluate the
first model. After, this initial subset is extended by the addition of a
fixed number of variables (increment) over the window, and a new
model is built and evaluated. Further increments are added until all
or a percentage of variables are taken into account, and cross-
validation parameters are calculated for each model. Lastly, the
variable subsets are compared using the quality parameters
calculated during validations, and the best variable subset is
defined [17]. Fig. 1 shows a general scheme for the original OPS
algorithm.

Core algorithm
The core algorithm of the OPS method consists of the following

steps.

calculate an informative vector;
sort in descending order the absolute values of the informative
vector and store the sorting index;
sort X variables considering the previous sorting index;
define an initial number of variables (window) to be investi-
gated in the ordered X array;
define a fixed number of variables to be added over the window
(increment);
build multivariate regression models starting with the initial
window and then its extension by addition of increments;
store the index of the variables investigated in each subset
(window plus increment);
store cross-validation parameters of each model built by each
subset;
choose the best set of variables based on cross-validation
parameters.
2.2.1. Automatic OPS (autoOPS)
The choice of informative vector is a critical step in the OPS

method. Then, the automatic OPSwas proposed to perform all steps
of variable selection using several informative vectors and provided
the best results. In the new approach autoOPS, beyond the six
informative vectors calculated in the original OPS, two new vectors
were used, being the univariate regression between each column of
matrix X with y (URXY), and the vector of weights (WGHT) ob-
tained by the NIPALS [22] (nonlinear iterative partial least squares)
algorithm. The URXY vector contains the information about the
regression coefficient obtained by each j column of X (xj) with y
response and the difference between the measured and predicted
y. This vector can be calculated as follows:

bbj ¼ ðxtjxjÞ
�1

xtjyby j ¼xjbbj

eyj ¼ y � by j

urxyj ¼ bbjð2Þ ðeytjeyjÞ
. (3)

A univariate regression (y¼ xb) is performed using each pre-
dictor xj and y. The regression coefficients b (a vector with two
elements, being the intercept and slope, respectively) are obtained
by classical least squares. The residue (eyj) between the predicted ŷ
and y is calculated, and the URXY value of each variable (urxyj) is
subsequently obtained by ration between the second element of b
(slope) and the residual sum of squares. A high amount of URXY
indicates that the corresponding variable should contain valuable
information for the model as the residue for this variable presents a
small value.

Besides the individual vectors (eight options, six from the
original version of OPS and two news), their binary combinations
(twenty-eight combinations) and the product of all individual
vectors simultaneously (PRODALL) can also be used to search the
best set of variables for prediction. All vectors are transformed into
absolute values, and the infinite norm was applied. The norm was
not applied on COR informative vector. The summary of all infor-
mative vectors is shown in Fig. 2.

The new approach performs the selection using one of the
following vector input options:

1. Single vector, i.e., only one of the thirty-seven vectors (eight
individual, twenty-eight binary combinations and the PRODALL
shown in Fig. 2 as the colored boxes).

2. Main vectors, i.e., all eight individual vectors simultaneously
(vectors placed on the dashed rectangle in the left side of Fig. 2).

3. Interaction vectors, i.e., all twenty-eight binary combinations of
two individual vectors (colored ones above the main diagonal
line) plus PRODALL (the top row of Fig. 2) simultaneously.



Fig. 1. General scheme of variable selection steps using OPS algorithm. (1) Informative vectors are obtained; (2) the data matrix is differentiated in according to the corresponding
absolute values of the informative vector elements; (3) the differentiated variables are sorting in descending order; (4) an initial subset of variables (window) is defined to build and
evaluate the first model; (5) this initial subset is extended by the addition of a fix number of variables (increment) over the window, and further increments are added until all, or
some percentage of variables are taken into account; (6) cross-validation parameters are calculated for each model; (7) the variable subsets are compared using the quality pa-
rameters calculated during validations, and the best variables subset is defined. The different colors represent the weight of the variables and were randomly assigned. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Summary of all informative vector options to be used in new OPS algorithms for variable selection. REG: regression coefficients; COR: correlation between each column of
matrix X with y; SQR: residual information of the reconstructed matrix with h latent variables; NAS: net analyte signal; VIP: variable importance on projection; URXY: univariate
regression between each column of matrix X with y; WGHT: weights; COV: covariance procedures; PRODALL: the product of all single vectors simultaneously.

J.V. Roque et al. / Analytica Chimica Acta 1075 (2019) 57e7060
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4. All vectors, i.e., the main and interaction vectors options
simultaneously.

In these options, when more than one vector is initialized in the
OPS algorithm (options 2, 3, and 4), the correspondent vectors are
used. Based on cross-validation parameters, the best vector is
chosen to perform variable selection. The aim is to find the best
variable subset to build predictive multivariate regression models.
Thus, a selection criterion (sc) was defined to choose the vector,
which is shown in equation (4).

sci ¼ RMSECVi=RCV i (4)

where RMSECV to RCV ratio of each vector i, it is obtained and the
vector that shows the lowest sc is chosen. Therefore, the set of
variables selected is used to build the final model.

Particular attention should be given to the number of latent
variables used in OPS algorithms. Firstly, the number of latent
variables (hMod) used to build the model was determined based on
RMSECV values obtained by cross-validation procedure. In addition,
some informative vectors, as REG, SQR, VIP, NAS, andWGHT, require
a number of latent variables to be obtained. However, sometimes,
hMod is not able to generate an informative vector with quality for
variable selection. Therefore, to find the best number of latent
variables for OPS (hOPS), a study using the full dataset is performed
by increasing the number of latent variables of the model, starting
from the pre-determined hMod, and carrying out the variable se-
lection up to a given number of latent variables. Then, varying the
hMod value, the hOPS is chosen based on the smallest RMSECV
value. Hence, two types of latent variables are employed in the OPS
algorithm, one representing the number of latent variables for
model building (hMod) and the other employed to generate the
REG, SQR, VIP, NAS, and WGHT informative vector in OPS method
(hOPS).

autoOPS algorithm
The algorithm autoOPS consists of the following steps.

choose k informative vectors to be studied;
for i ¼ 1 to k
Fig.
new
of c
calculate the i informative vector;
run the core of OPS algorithm using the i informative
vector;
store the i set of selected variables;
apply equation 4;
store sci;

end
the lowest sc indicates the informative vector that selects the
best set of variables.
3. Scheme of the feedOPS algorithm where the pre-selected variables return to a
selection run until specific criteria are achieved. RMSECV: root mean square error

ross-validation, n: loop counter.
2.2.2. Feedback OPS (feedOPS)
The feedOPS has the purpose of applying feedback in the OPS

algorithm, wherein pre-selected variables can return to a new se-
lection run until specific criteria are achieved (Fig. 3). This new
strategyworks in a loop constrained by one ormore rule; when one
of them is attained the loop stops.

In feedOPS, RMSECV was taken as a reference parameter.
Convergence is achieved when in two consecutive selection runs,
the relative difference (rd) (equation (5)) is less than an rd value
defined or when the RMSECV value increases instead of decrease.
Thus, the previous loop is taken as the best selection. Besides that,
the maximum number of selection runs can be defined. Therefore,
the last loop is considered the best selection. In each selection run,
the autoOPS is applied to provide the best informative vector.

rd ¼ RMSECVn � RMSECVn�1=RMSECVn (5)

where n is the number of selection runs.
feedOPS algorithm
The algorithm feedOPS consists of the following steps.

define convergence criteria (rd and l ¼ max number of loops);
n ¼ 1;
while rdcalc > rd or n < l
run autoOPS algorithm;
store RMSECVn of the selected informative vector;
% The RMSECV of full X matrix was used to compare with
RMSECV in the first loop.
calculate rdcalc (Equation 5);

if RMSECVn e RMSECVn-1 > 0

break.

End
n ¼ n þ 1;

end
obtaining the final set of selected variables.
2.2.3. OPS intervals (iOPS)
In this new approach, the OPS is applied in subdivisions of the

full array. This search strategy is called OPS intervals (iOPS) and is
showed in Fig. 4. Firstly, the number of variables in each interval is
defined. The entire array is subdivided, and the variable selection is
performed. In each interval, the autoOPS or the feedOPS is applied.
This step is mainly used to reduce the number of variables in each
interval. The intervals comprising only the selected variables will be
merged into a new matrix and a new variable selection will take
place considering predetermined window and increment. The
autoOPS (or feedOPS) is applied in the new array, and the best set of
variables is reached.

iOPS algorithm
The algorithm iOPS consists of the following steps.

define the number of variables in each interval (at least 50);
apply autoOPS or feedOPS algorithm in each interval;
find the best set of variables for each interval;
create a new array containing the selected variables in each
interval;
apply autoOPS or feedOPS algorithm in the new array;
obtaining the final set of selected variables.
% We nickname this algorithm of cr�eme de la cr�eme.

Once all new approaches have been explained, Fig. 5 shows a
chart that represents the options to apply the new OPS algorithms
and summarizes the names of different options of OPS algorithm
application.



Fig. 4. Scheme of iOPS algorithmwhere the variable selection is performed in each interval; subsequently, these selected variables are ordered, and a new selection is performed to
find the best set of variables. (1) The array is subdivided; (2) autoOPS or feedOPS is applied in each interval; and a new matrix is created with the selected variables in each interval
(3) autoOPS or feedOPS is applied in the new matrix; (4) the best set of variables is reached. RMSECV: root mean square error of cross-validation.

Fig. 5. Scheme of the new OPS algorithms (autoOPS, feedOPS, and iOPS) combined
with the four vector options. Names of OPS options derived by the combination of new
OPS approaches with all vector options are arranged in the lines for the arrows.
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Each newapproach combinedwith each vector option generates
sixteen ways to apply the OPS. For example, using autoOPS with a
single vector, the option is called autoS. The feedOPS with the main
vector option is named feedM. The application of iOPSwith autoOPS
and all vectors option is called iautoA.

3. Experimental

The OPS algorithms were written in function .m to MATLAB
2019a (Math Works, Natick, USA) and are fully authorial (available
at www.deq.ufv.br/chemometrics). This section is about the vali-
dation of the new approaches of OPS (autoOPS, feedOPS, and iOPS).
Initially, the new approaches were applied in the six datasets used
in the original OPS paper [17] to compare the prediction perfor-
mance with the new OPS algorithms. Then, twelve new datasets,
comprising different types of data, were used to compare the per-
formance of the new OPS approaches with other variable selection
algorithms used by chemometrists, i.e., genetic algorithm [10] (GA),
intervals successive projections algorithm for PLS [8] (iSPA), and
recursive weighted partial least squares [11] (rPLS). All calculations
were performed in MATLAB environment.

3.1. Modeling

The six datasets studied in the original OPS paper were used to
build PLS models using variables selected by the new OPS
approaches (autoOPS, feedOPS, and iOPS). They were tested using
all vectors, the most complete OPS option. The calibration and
prediction sets were the same used in the original paper [17]. In
addition, the method leave-N-out cross-validation was applied,
where N was set as 10% of the total sample number in the training
set. The range calibrated, the size of calibration and prediction sets,
and the pre-treatment performed in each dataset can be found
elsewhere [17]. The new OPS algorithms were applied using
different windows and increments of variables for each dataset, and
100% of variables were tested. In feedOPS, a minimum difference of
2% between two consecutive RMSECVs and a maximum number of
ten loops were set as convergence criteria. In iOPS, when the fee-
dOPS optionwas used to run the selection, the convergence criteria
were the same as used in feedOPS. The full matrix was divided into
intervals of 10% of the its size, limited in at least fifty variables.
Additionally, hOPS was calculated for each interval in iOPS.

Twelve new datasets were used to build PLS models using all
variables of the X matrix (full models) and selected variables using
the new OPS, GA, iSPA, and rPLS algorithms. All three new ap-
proaches of OPS were tested for each dataset using all vectors, the
most complete OPS option. A total of thirty-seven informative
vectors were evaluated. In order to compare the OPS with the other
three variable selection algorithms, the new strategy that provided
the best OPS model for each dataset was chosen between the three
new strategies available using the all vectors option. This choice
was made based on the parameters described in the section “2.1
Model evaluation”.

The full datasets were split into calibration and prediction sets
using Kennard-Stone algorithm [23]. Table 1 shows information
about the property and range calibrated, the size of calibration and
prediction sets, and the pre-treatment performed in each dataset.
The y variable was mean centered for all the properties and
different pre-treatments and their combinations were studied for
each full matrix X. The pre-treatments tested were mean center,
autoscale, smoothing, first and second derivative, multiplicative
scatter correction (MSC), normalize, baseline, and standard normal
variate (SNV). The combinations of two, three and four pre-
treatments were also studied. The pre-treatments that presented
amodel with the lowest RMSECV valuewas chosen for each dataset.
All algorithms performed the variable selection with datasets
equally pre-treated.

The new OPS algorithms were applied using the window of 10
and increments of 5 variables, 100% of variables were tested,
random cross-validation was applied, where splits were set at 10%
ofXmatrix rows. Only QSARmodels were built using leave-one-out
cross-validation. In feedOPS, as convergence criteria, 2% as the
minimum difference between two consecutive RMSECVs and ten as
the maximum number of loops. In iOPS, when the option to run the

http://www.deq.ufv.br/chemometrics


Table 1
Information about datasets used to perform validation of new strategies of OPS algorithm.

Dataset Voltammetry Fluorescence MS Raman NIR UV

Property Ascorbic Acid Catechol Ethanol Iodine Value Lignin Phorbol esters
Range 21.5e100.0 1.0e8.0 12.79 - 15.09 52.0e69.0 18.04e28.36 0.72 - 3.58
Unit mmol L�1 mmol L�1 vol (%) g I2 100 g fat �1 % (w/w) mg g�1

Size 22� 525 (Cal) 28� 221 (Cal) 34� 200 (Cal) 75� 5667 (Cal) 216� 1038 (Cal) 106� 656 (Cal)
10� 525 (Pred) 10� 221 (Pred) 10� 200 (Pred) 30� 5667 (Pred) 40� 1038 (Pred) 32� 656 (Pred)

Column-wise pre-treatment Mean Center Mean Center Mean Center Auto Mean Center Mean Center
Row-wise pre-treatment Baseline None None SNV Baseline þ

2nd Deriv (3) þ MSC
1st Deriv (15)

Dataset NMR GC Vis/NIR XRF QSAR MS

Property Pentanol Overall Quality Xylene Ni MMP-2 pIC50 Peroxide Value
Range 0e100 1.13 - 4.50 4.00e15.01 0.062 - 15.890 6.25 - 8.28 1.05e33.62
Unit % e weight percent (%) % e meq Kg�1

Size 181� 2334 (Cal) 119� 2294 (Cal) 25� 316 (Cal) 12� 261 (Cal) 25� 439 (Cal) 20� 106 (Cal)
50� 2334 (Pred) 40� 2294 (Pred) 5� 316 (Pred) 3� 261 (Pred) 6� 439 (Pred) 5� 106 (Pred)

Column-wise pre-treatment Mean Center Auto Mean Center Mean Center Auto Mean Center
Row-wise pre-treatment None MSC þ

1st Deriv (19) þ Norm
1st Deriv (3) None None None

Cal: calibration set; Pred: prediction set; Auto: autoscaling; SNV: standard normal variate; 1st or 2nd Deriv: type of derivative with the window between parenthesis; MSC:
multiplicative scatter correction; Norm: normalize to unit area; MMP-2 pIC50: Half-maximal inhibitory concentration negative logarithm of type 2 matrix metalloproteinases.
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selection using feedOPSwas used, the convergence criteriawere the
same as those used in feedOPS. The full matrix was divided into
intervals of 10% of the its size, limited in at least fifty variables.
Additionally, hOPSwas calculated for each interval in iOPS. Random
cross-validationwas applied to build full models, where splits were
set at 10% of X matrix rows. Although the OPS algorithms require
several parameters to optimize the variable selection, only X and y
are mandatory inputs for all new OPS algorithms. It is possible to
perform the variable selection using some default parameters and
automatic choices, but the result may not be the optimal one.

The GA is a method used for solving optimization problems
based on natural selection processes and genetics that mimic bio-
logical evolution [10]. Initially, a starting population is constituted
for a series of different individuals and the number of individuals is
defined as the populationwith a defined size. These individuals are
analyzed and crossed according to the parameters introduced into
the algorithm. At the end of the process, a vector consisting of zeros
and ones indicates whether variables should be included (1) or not
(0). The parameters used to perform the variable selection were
optimized (results not shown) and the following conditions were
used: a population of 52, a maximum generation of 300, a mutation
rate of 0.008, a window width of 1, convergence of 80, 50 terms
included at initiation, cross-over rule of 2, random cross-validation
was applied with the number of subsets to divide data into for
cross-validation of 10, cross-validation iteration of 1 and 3 replicate
runs. The GA variable selection was performed using the .m func-
tions from and PLS-Toolbox 8.2 (Eigenvector Research, Inc.
Wenatchee, USA).

The iSPA combines the noise-reduction properties of PLS with
the possibility of discarding non-informative variables in SPA-MLR
algorithm [24]. In this method, it is assumed that the variables have
been divided into non-overlapping intervals, usually, with the same
length. First, the columns of X are partitioned according to the in-
tervals of variables previously defined and subjected to a sequence
of projection operations that result in the creation of chains. Sec-
ond, PLS models are built using leave-one-out cross-validation for
each combination of intervals, and the best combination of in-
tervals is then chosen by the smallest RMSECV [8]. The iSPA algo-
rithm was applied dividing the spectra into 20 intervals and the
maximum number of intervals was selected as 20. This algorithm
for MATLAB was provided by the authors.

The rPLS method uses the dependent variable y to guide the
variable weighting recursively. This method iteratively reweights
the variables using the regression vector calculated by PLS [11].
Random cross-validation with splits of 10 and the number of iter-
ations infinite were the default settings used in variable selection.
This algorithm forMATLABwas retrieved fromwww.models.life.ku.
dk/algorithms.

The variable selection was carried out in triplicate on the cali-
bration set. Thus, three models were built for OPS, GA, iSPA, and
rPLS. Each model was applied on the prediction set, and the
calculated RMSEP values were pairwise compared by Tukey test.
Differences with p< 0.05 were considered significant.
3.2. Datasets

The six datasets used in the original OPS paper were near-
infrared spectroscopy (NIR), fluorescence spectroscopy, a simu-
lated dataset, Raman spectroscopy, gas chromatography (GC), and
quantitative structure-activity relationship (QSAR) data.

For NIR spectra of diesel samples [25], the following physical
properties were modeled: boiling point at 50% recovery, cetane
number, density, freezing temperature of the fuel, total aromatics,
and viscosity. Mixtures of standard solutions of six different ana-
lytes were used in fluorescence [26]: catechol, hydroquinone,
indole, resorcinol, L-tryptophane, and DL-tyrosine. The simulated
dataset consisted of twenty mixtures simulated by using
ultraviolet-type spectra from four analytes and their respective
concentrations randomly generated. For Raman spectra of Escita-
lopram® tablets [27], the dependent variable referred to the amount
of active substance in the tablets. GC dataset of fuel samples
(Pirouette® software e Infometrix, Inc) is formed by thirty-five
independent variables consisting of the chromatograms peak
areas and three dependent variables comprising the following
physical properties: flash point, freeze point, and specific gravity.
The QSAR dataset [28] consists of fourteen molecular descriptors
for forty-eight HIV-1 protease inhibitors and the dependent vari-
able was the in vitro inhibition activity.

For NIR dataset, the new OPS algorithms were applied using
window of five and increments of two variables (window 5,
increment 2), Raman dataset (window 10, increment 5), fluores-
cence dataset (window 5, increment 2), GC dataset (window 2,
increment 1), QSAR dataset (window 2, increment 1), and simu-
lated dataset (window 5, increment 1).

http://www.models.life.ku.dk/algorithms
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Table 2
Best OPS model, informative vector and the number of latent variables used to
perform the selection (hOPS) obtained for each dataset.

Dataset Property OPSa model Vector

Voltammetry Ascorbic Acid feed NAS (19)
Fluorescence Catechol iauto SQR (5)� COV
MS Ethanol iauto REG (18)� COR
Raman Iodine Value iauto URXY
NIR Lignin feed REG (19)
UV Phorbol esters auto REG (9)� COR
NMR Pentanol auto SQR (7)
GC Overall Quality ifeed REG (16)
Vis/NIR Xylene iauto REG (10)
XRF Ni auto SQR (11)�URXY
QSAR MMP-2 pIC50 iauto REG (19)
MS Peroxide value feed REG (9)�NAS (9)

MMP-2 pIC50: Half-maximal inhibitory concentration negative logarithm of type 2
matrix metalloproteinases.

a Best result. hOPS values are presented between parentheses.
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The twelve new datasets used to compare full models and
selected variables using the newOPS, GA, iSPA, and rPLS algorithms
are described below.

Voltammetry: This dataset was presented by Te�ofilo [29] and
consists of a mixture of standard solutions of three biological in-
terest compounds (dopamine, uric acid, and ascorbic acid). Square
wave voltammetry (SWV) with boron-doped diamond electrode
was employed to quantify these analytes. The potential range
investigated was from 0.01 to 1.5 V.

Fluorescence Spectroscopy: This dataset was presented by
Te�ofilo [29] and consists of a mixture of six standard phenol solu-
tions (hydroquinone, guaiacol, p-cresol, m-cresol, catechol, and
phenol). The excitation wavelength was fixed at 275 nm, and the
emission wavelength was scanned from 270 to 380 nm.

Mass Spectrometry (MS): (1) The first mass dataset was ob-
tained from http://www.models.ku.dk/datasets and was presented
by Skov et al. [30]. A mass spectrum was obtained for each sample
of wine in the range of 5e204m/z using the electron ionization
mode at 70 eV. Fourteen properties were evaluated in the original
work [30], but only ethanol was calibrated in this work. (2) The
second contains mass spectra collected from the headspace of
butter samples that had been artificially aged to produce various
levels of spoilage. The reference values for rancidity are peroxide
values. The data were supplied by Leatherhead, UK, and obtained
from Pirouette® (Infometrix, Inc) software. The mass spectrumwas
obtained in the range from 44 to 149m/z.

Raman Spectroscopy: This dataset was presented by Lyndgaard
et al. [31], and it is available at http://www.models.ku.dk/datasets.
The samples were 16 pork carcasses taken from the daily produc-
tion stock of a slaughterhouse for determining the fatty acid
composition of pork backfat as a function of the iodine depth
profile. The Raman spectra were acquired using a total of 16 accu-
mulations of 1 s exposure and were stored as Raman shifts in the
range 1800e200 cm�1.

Near Infrared Spectroscopy (NIR): This dataset is composed of
sugarcane leaf NIR spectra that was used to predict the lignin
content of sugarcane stalks, and it was provided by Assis et al. [16].
The NIR spectra were acquired from 10000 to 4000 cm�1.

Ultraviolet Spectroscopy (UV): This dataset was obtained from
Roque et al. [32], and consists of UV spectra of Jatropha curcas ex-
tracts in the range of 210e350 nm. Phorbol esters content was the
modeled property.

Nuclear Magnetic Resonance Spectroscopy (NMR): This dataset
is available at http://www.models.ku.dk/datasets, and was pre-
sented by Winning et al. [33]. It consists of NMR spectra of a
designed set of 231 simple alcohol mixture (propanol, butanol, and
pentanol), and each spectrum was acquired in the range of
0.64e3.84 ppm.

Gas Chromatography (GC): Chromatographic profiles of volatile
roasted coffee compounds provided by Ribeiro et al. [34] to predict
scores of coffee beverage overall quality. The chromatograms
dataset used in this work comprises of the range from 1.25 to
21.83min of retention time.

Visible and Near Infrared Spectroscopy (Vis/NIR): The data were
obtained from Pirouette® (Infometrix, Inc) software. This dataset
contains spectra of hydrocarbon mixtures (heptane, isooctane,
toluene, xylene, and decane) from two different diode array spec-
trometers. Absorbances from 470 to 1100 nm were collected.

X-Ray Fluorescence Spectrometry (XRF): X-ray fluorescence
spectra were obtained from Pirouette® (Infometrix, Inc) software.
Wang et al. [35] presented this dataset. Spectra of nickel alloys plus
elemental concentrations in the alloys were measured from
2q¼ 44�e70�. The nickel concentrations were determined by wet
chemistry.

Quantitative structure-activity relationship (QSAR): De Melo
[36] presented this dataset of matrix metalloproteinases type 2
(MMP-2) with 31 cinnamoyl pyrrolidine derivatives, where 439
molecular descriptors were obtained.

4. Results and discussion

4.1. Algorithms

The finest OPS model of each dataset is presented in Table 2;
regarding this, no tendency is observed. In order to present the
detailed results obtained using each one of the new approaches
(autoOPS, feedOPS, and iOPS), it was selected a dataset that shows
the best result using each of one them. For autoOPS was chosen
XRF; for feedOPS, voltammetry; and for iOPS, GC dataset.

The best OPS model obtained for XRF dataset was using the
autoOPS algorithm. In Fig. 6A1 the sc value obtained for each of the
thirty-eight vectors is shown. It is noticeable that the vector
SQR�URXY showed the lowest value (dashed red line). Addition-
ally, not all vectors were able to improve prediction quality
regarding the full model (solid red line). Some of them presented
consistent improvement of model prediction. These results indi-
cated that vector combinations performed better than individual
vectors. This conclusion cannot be generalized for all datasets, but it
is enough to show the importance of combinations. Fig. 6A2 shows
the OPS plot for recognition of the best set of variables. It is a detail
of the best result shown in Fig. 6A1 for SQR�URXY vector. This plot
displays an increase of the variables number, related to the addition
of new variables to the first variables window, and a decrease in
RMSECV and increase in RCV. This type of plot is very useful to
visualize the variable selection and help in choosing the best set.
The ideal subset of variables is found when the ration of RMSECV
and RCV is minimum (equation (4)). Sometimes, an increase of the
variables number is accomplished by a small variation in RMSECV
value. In this way, the subset of selected variables may not be ideal,
because instead the RMSECV increase with the addition of new
noninformative variables, this parameter remained almost con-
stant. Then, an overestimated subset of variables can be errone-
ously selected.

In Fig. 6A2, with few variables, the OPS model performance is
worse than the full model (solid red line), and as the number of
variables increases, the RMSECV decreases and RCV increases until
the optimal number of variables is reached (dashed red line). After
that, the RMSECV value increases and RCV decreases with the in-
clusion of noninformative variables.

Voltammetry dataset was used to present the result provided by
feedOPS (Fig. 6B). For this dataset, eight selection runs were

http://www.models.ku.dk/datasets
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Fig. 6. (A1) Minimum sc values obtained for all informative vectors used in the autoOPS algorithm for the XRF dataset. The selected vector was detached as dashed red line. (A2)
Detailed results of variable subsets obtained by the autoOPS algorithm using the SQR�URXY vector and your respective RMSECV and RCV values for the XRF dataset. The dashed red
line means the selected subset. Black spheres are RMSECV values showed in the left axis, and black squares are RCV values showed in the right axis. (B) FeedOPS typical plot (number
of selection runs and RMSECV values) for the voltammetry dataset. The dashed red line indicates the loop where the convergence was attained, and the set of selected variables was
obtained. (C1) iOPS plot for the GC dataset with RMSECV values obtained by PLS models built using the selected variables in each interval of the full array (first variable selection
step). (C2) iOPS plot for the GC dataset with RMSECV values obtained by PLS models built using the subsets of the merged matrix built from selected variables in each interval. A
dashed red line shows the subset were the best set of variables were selected. A solid red line represents the RMSECV of full model in each subplot of iOPS. sc: selection criterion;
RMSECV: root mean square error of cross-validation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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performed. The number of informative variables selected and the
RMSECV value decreases in each loop until one of the criteria is
achieved. The maximum of ten loops and the relative difference
between two consecutive RMSECV values lower than 2% were set as
constraints. Convergence was reached with seven loops, where the
difference between RMSECV of the seventh and eighth loop was
smaller than 2%. Therefore, the set of variables was selected by the
NAS vector in loop 7 (dashed red line). As a result, a meaningful
reduction of the number of variables (from 525 to 14) and improved
model performance parameters was reached.

Regarding iOPS, the GC dataset results were chosen to be pre-
sented. Fig. 6C1 shows the RMSECV obtained by each interval of the
full array using variable selection. In this example, the selection of
variables in each subdivisionwas not able to enhance the predictive
capacity of PLS models. So, in the last step of iOPS, the selected
variables in each interval were merged into a new matrix. A new
variable selection took place considering window and increment of
variables, and the best set of variables was obtained. In Fig. 6C2, the
result of this last step is shown. RMSECV value decreases with the
addition of the increments of variables until finding the finest
subset of variables (dashed red line) and increases with the inclu-
sion of noninformative variables in the model.
4.2. Modeling

The three new OPS approaches provide four different ways to
apply OPS since the iOPS can be applied using autoOPS or feedOPS.
The PLS models built using the selected variables for the six data-
sets used in the original OPS paper are shown in Fig. 7.

The number of selected variables is placed in the left-side axis
and is represented by bars. The informative vectors are placed in-
side the bars. The RMSEP values are located in the right-side axis
and are represented by the black spheres. The hMod for eachmodel
is shown below the spheres. In general, the prediction performance
of the new approaches outperformed the first version of OPS
(OPSv1) algorithm in all datasets.
The hMod used in the original paper was taken as reference to
run the new OPS algorithms, and for most of the cases, this number
was kept and for the others a smaller hMod was chosen automat-
ically. The informative vector used for all datasets in the original
paper was REG or some combination with it. With the new ap-
proaches, different informative vectors were chosen, including the
PRODALL vector for three properties (Fig. 7B, H, and 7J), proving the
importance of new vectors and their combinations to select more
predictive variables. For some datasets, the number of selected
variables were slightly higher than the ones selected in the original
paper, but the prediction was better.

In Fig. 7ReU, it was not possible to apply the iOPS algorithm,
since the GC (Fig. 7ReT) and QSAR (Fig. 7U) datasets have thirty-
five and fourteen variables, respectively. For GC (specific gravity e

Fig. 7T), the RMSEP value was the same for OPSv1, auto, and feed
approaches, but the number of selected variables and the infor-
mative vector were not the same. For QSAR (Fig. 7U), the RMSEP
value, the number of selected variables and the informative vector
were the same for OPSv1, auto and feed approaches. Both datasets
have a few number of variables, and it is possible that this fact
influenced these results.

The PLS models obtained using the twelve datasets previously
presented are described. The mean results of the performance pa-
rameters of PLS models are shown in Table 3. Concerning the
RMSECV values, the OPS models were smaller than full models for
all datasets. Regarding the cross-validation results, OPS was the
most predictive for voltammetry and NIR; GA was the most pre-
dictive for fluorescence, MS (ethanol), NMR, Vis/NIR, XRF, QSAR,
and MS (peroxide value); rPLS was the most predictive for GC and
OPS and rPLS presented similar results for Raman and UV.

The RMSEP values are followed by superscript letters indicating
the Tukey test results. Different letters mean that the models are
significantly different. For MS (ethanol) and UV, all five PLS models
(full and four variable selection models) differ significantly be-
tween then, being the OPS, the most predictive model. Only for
fluorescence dataset, OPS and GA models were statistically



Fig. 7. Number of selected variables placed in the left-side axis (light gray bar) and RMSEP values placed in the right-side axis (black spheres). The informative vector and the hMod
are placed in bars and black spheres, respectively. The values outside the bar are the percent of decrease (negative values) or increase (positive values) of RMSEP values or the
number of variables regarding full model represented by the horizontal line on zero. (A) NIR e boiling point at 50% recovery, (B) NIR e cetane number, (C) NIR e density, (D) NIR e

freezing temperature of the fuel, (E) NIR e total aromatics, (F) UVeviscosity, (G) Fluorescence e catechol, (H) Fluorescence e hydroquinone, (I) Fluorescence e indole, (J) Fluo-
rescence e resorcinol, (K) Fluorescence e L-tryptophane, (L) Fluorescence e DL-tyrosine, (M) Simulated e analyte 01, (N) Simulated e analyte 02, (O) Simulated 03 e analyte 03, (P)
Simulated e analyte 04, (Q) Raman e active substance in Escitalopram ® tablets, (R) GC e flash point, (S) GC e freeze point, (T) GC e specific gravity, and (U) QSAR e in vitro
inhibition activity. RMSEP: root mean square error of prediction, hMod: number of latent variables of the model. *NC: not calculated.
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Table 3
Performance parameters of PLS models obtained using all variables and those selected by OPS, GA, iSPA, and rPLS algorithms.

Voltammetry - Ascorbic Acid Fluorescence - Catechol MS - Ethanol

Full OPS GA iSPA rPLS Full OPS GA iSPA rPLS Full OPS GA iSPA rPLS

nvars 525 14 74e80 52e79 7 221 30 32e35 33e166 28 112y 10 13e22 79 7
hMod 6 3 6
RMSECV 8.2 3.4 4.8 10.0 3.7 0.6 0.4 0.3 0.6 0.5 0.46 0.36 0.29 0.48 0.35
RCV 0.943 0.991 0.982 0.920 0.989 0.989 0.994 0.997 0.989 0.993 0.160 0.666 0.686 0.100 0.517
RMSEP 7.6c 4.0a 6.1b 9.2d 8.4c 0.8b 0.7a 0.6a 0.9b 0.8b 0.68e 0.36a 0.42b 0.48c 0.56d

RP 0.969 0.995 0.983 0.962 0.963 0.989 0.994 0.994 0.988 0.990 0.220 0.865 0.802 0.783 0.551

Raman - Iodine Value NIR - Lignin UV - Phorbol Esters

Full OPS GA iSPA rPLS Full OPS GA iSPA rPLS Full OPS GA iSPA rPLS

nvars 5667 25 2132e2224 284e3116 84 1038 135 293e358 518e882 149 656 50 148e164 66 51
hMod 2 10 8
RMSECV 2.1 2.0 2.1 2.5 2.0 1.42 0.59 0.81 1.53 0.88 0.29 0.23 0.30 0.25 0.23
RCV 0.763 0.801 0.785 0.644 0.806 0.733 0.959 0.921 0.698 0.906 0.855 0.912 0.849 0.890 0.909
RMSEP 2.0a 1.9a 2.0a 3.2b 2.4ab 0.89c 0.67a 0.75b 1.02d 0.80b 0.27c 0.24a 0.28d 0.26b 0.32e

RP 0.880 0.908 0.892 0.720 0.848 0.928 0.960 0.948 0.902 0.941 0.947 0.958 0.943 0.952 0.924

NMR - Pentanol GC - Overall Quality Vis/NIR - Xylene

Full OPS GA iSPA rPLS Full OPS GA iSPA rPLS Full OPS GA iSPA rPLS

nvars 2334 198 985e1167 2101 199 2294 185 762e772 115e1492 736 316 45 59e63 175e285 27
hMod 4 5 5
RMSECV 0.68 0.65 0.61 0.68 0.69 0.37 0.28 0.20 0.49 0.19 0.21 0.14 0.06 0.19 0.15
RCV 0.999 0.999 0.999 0.999 0.999 0.918 0.953 0.977 0.847 0.979 0.999 0.999 0.999 0.999 0.999
RMSEP 2.45b 2.32a 2.45b 2.45b 2.44b 0.38b 0.36a 0.49d 0.48d 0.40c 0.16c 0.12a 0.13b 0.18d 0.14b

RP 0.995 0.996 0.996 0.995 0.996 0.925 0.937 0.887 0.877 0.920 0.999 0.999 0.999 0.999 0.999

XRF - Ni QSAR - MMP-2 pIC50 MS - Peroxide Value

Full OPS GA iSPA rPLS Full OPS GA iSPA rPLS Full OPS GA iSPA rPLS

nvars 261 30 79e86 79e105 248 439 195 48e117 373e439 26 106 40 26e53 69e91 104
hMod 4 3 6
RMSECV 0.173 0.149 0.117 0.246 0.172 0.45 0.40 0.31 0.45 0.33 0.44 0.39 0.28 0.48 0.49
RCV 0.999 0.999 0.999 0.999 0.999 0.647 0.731 0.834 0.669 0.829 0.999 0.999 0.999 0.999 0.999
RMSEP 0.185b 0.139a 0.204c 0.208c 0.185b 0.51c 0.37a 0.51c 0.51c 0.48b 0.39b 0.32a 0.52c 0.39b 0.39b

RP 0.999 0.999 0.999 0.999 0.999 0.204 0.564 0.255 0.206 0.263 0.999 0.999 0.999 0.999 0.999

nvars: number of variables; hMod: number of latent variables of the model; RMSECV: root mean square error of cross-validation; RCV: correlation coefficient of cross-
validation; RMSEP: root mean square error of prediction, RP: correlation coefficient of prediction. Units: Voltammetry e ascorbic acid (mmol L�1), Fluorescence e catechol
(mmol L�1), MS e ethanol (vol - %), Raman e iodine value (g I2 100 g fat�1), NIR e lignin (% w/w), UV e phorbol esters (mg g�1), NMR e pentanol (%), GC e overall quality (not
applied), Vis/NIR e xylene (weight percent - %), XRF e Ni (%), (K) QSAR e MMP-2 pIC50 (not applied), and MS e peroxide value (meq Kg�1). MMP-2 pIC50: Half-maximal
inhibitory concentration negative logarithm of type 2 matrix metalloproteinases. yFull dataset after removal of variables that not present variance.
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equivalent. Furthermore, RMSEP values of full, OPS, GA, and rPLS do
not differ significantly in Raman dataset.

In some cases, the least predictive model was not the full. For
example, in voltammetry, NIR, GC, Vis/NIR, and XRF, iSPA models
have the highest RMSEP value. Also, the RMSEPwas higher than full
in rPLS for UV and GC datasets, and in GA for UV, GC, XRF, and MS
(peroxide value).

In QSAR models, it is recommended to verify the possibility of
chance correlation using the y-randomization test [36], where the y
response was randomized five hundred times. Then, OPS and rPLS
models do not show chance correlation. However, GA, iSPA, and full
models presented chance correlation (results not shown).

Special attention should be given to MS (ethanol) dataset. Re-
sults for iSPA and rPLS models were not obtained using as the start
point of selection the matrix with all two hundred variables
because those algorithms were not able to perform the variable
selection. In iSPA, the algorithm started the selection but paralyzed
and did not finish the selection. For rPLS, the selection has not even
begun; an error appears indicating that the X data, not present
variance. From these, it can be presumed that both methods, iSPA,
and rPLS, show the limitation to select variables in datasets like GC
and MS, where the baseline does not have variance, and a peak
suddenly arises. Thought, in this work, these algorithms perform
the selection in a GC and another MS dataset. This can be explained
by the presence of noise in the baseline, which confers variance to
the entire set of variables. So, to perform the selection with iSPA
and rPLS algorithms, the variables that not present variance were
eliminated and the full matrix now consists of 112 variables. This
new X was used to build the full model and to start the variable
selection.

In Fig. 8 is shown a bar plot with the RMSEP values and the
number of selected variables of each variable selection algorithm
for each dataset. These results are shown in percentage of increase
or decrease regarding the full models. For OPS models, the per-
centage of decrease in RMSEP values ranged from 5 to 47% and the
percentage of decrease in number of variables ranged from 56 to
99%. For GA and iSPA models, an error bar is shown because these
two variable selection methods do not show stability when
executing the selection more than once. iSPAwas reproducible only
in MS (ethanol), UV, and NMR datasets. OPS and rPLS do not show
any variance of selected variables in all twelve datasets, indicating
that they are highly reproducible.

Fig. 9 presents the selected variables for all datasets. Each sub-
plot shows the selected variables for each algorithm (OPS, GA, iSPA,
and rPLS), and the frequency at which a variable was selected. The
variable selection by OPS occurred, in general, where well-defined
regions are observed, i.e., peaks with rather clear physical meaning
were selected. In some datasets, baseline regions are also selected,
but despite this, the models are predictive. Besides that, the OPS
selected few variables in all datasets, while the other methods



Fig. 8. RMSEP values of variable selection models (light gray bar) and the number of selected variables (dark gray bar). The values outside the bar are the percent of decrease
(negative values) or increase (positive values) of RMSEP values or the number of variables regarding full model represented by the horizontal line on zero. (A) Voltammetry e

ascorbic acid (mmol L�1), (B) Fluorescence e catechol (mmol L�1), (C) MS e ethanol (vol - %), (D) Raman e iodine value (g I2 100 g fat�1), (E) NIR e lignin (% w/w), (F) UV e phorbol
esters (mg g�1), (G) NMR e pentanol (%), (H) GC e overall quality, (I) Vis/NIR e xylene (weight percent - %), (J) XRF e Ni (%), (K) QSAR e MMP-2 pIC50, and (L) MS e peroxide value
(meq Kg�1). RMSEP: root mean square error of prediction.
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selected almost all variables in some cases.
The variables selected by the fourmethods do notmatch inmost

datasets. Few common variables are selected in all four methods
(with the maximum frequency) as can be seen at the top of each
subplot in Fig. 9. Therefore, the selection methods studied in this
work do not converge to the same result of selected variables. Even
with some very similar selection strategies to OPS (rPLS uses the
regression vector, and iSPA uses intervals), the other methods are
not able to achieve the same result; they are very different. For
example, in Fig. 9B, the variables selected by OPS are more infor-
mative than those selected by the other methods since these var-
iables are in the region with higher intensity in the pure emission
spectra of catechol (305e320 nm). In Fig. 9G, the NMR spectra are
composed by four signals. GA and iSPA selected variables
throughout the spectra, including baseline. The rPLS and the OPS
selected four and two signals, respectively. The NMR signal be-
tween 3.00 and 3.25 chemical shift with high intensity is pentanol
specific, and the OPS algorithm was able to select this specific
signal, proving that OPS finds the region with higher selectivity.
Thus, the new OPS was able to select more informative and pre-
dictive variables.
5. Conclusions

The new comprehensive approaches of OPS, autoOPS, feedOPS,
and iOPS algorithms were developed and compared to the OPSv1
and the other three methods of variable selection concerning pre-
diction capacity. The prediction performance of the new strategies
outperformed the OPSv1. The new OPS algorithms were success-
fully applied to several types of dataset (sparse or non-sparse). They
selected interpretive variables with greater predictability and were
highly reproducible, selecting the same set of variables when
executing the selection more than once. In general, the new stra-
tegies were able to reduce the number of variables in all datasets
significantly. Besides that, they were better than the other methods
in the external prediction of all datasets. Although the new ap-
proaches presented good results, there is not a best strategy nor
informative vector suitable for all datasets or dataset type. A unique
algorithm that automatically executes the three new OPS ap-
proaches is easily programmable. Overall, the OPS proved to be a
universal and powerful method that significantly improved the
prediction ability of the models, making it simpler to interpret, and
showing excellent stability by selecting the same set of variables
when executing the selection more than once.
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